

Aren't helmets hotter than hard hats?

Objective

 To evaluate the internal air temperature for new safety helmets when exposed to a sunny summer day. Evaluation criteria includes: helmet color, helmet air vents, and internal foam liner.

Test Samples

Vented

No Vent

Original

With Foam Liner

Foam Liner Removed

Test Setup

- Test performed from 9:41am until 4:05pm
- Helmets under evaluation were placed on foam head forms
- Temperature readings:
 - Recorded every 1 minute using data acquisition system
 - Type K thermocouples used
 - Placed in the air void between helmet and head

Test Conditions

- Mostly sunny day
- Max temperature = 92°F
- Average temperature = 88°F

Test Results

Max & Average Temperatures

Inside Helmet Air

Conclusions

Foam liners are effective

- Helmets with a foam liner have a 8-12% lower inside air temp.
- 7-8°F difference for blue
- 7-8°F difference for white

Air vents are somewhat effective

- Helmets with an air vent have a 2-3% lower inside air temp.
- 1-2°F difference for blue helmets
- 2-3°F difference for white helmets

White colored helmets are cooler than blue

- White colored have a 3% lower inside air temp. (both with foam liner)
- 3°F difference for white helmets

Head Protection Temperature Study

Georgia Tech Enterprise Innovation Institute: Safety, Health and Environmental Services Group

- Testing Protocol
 - Six Quest Temp 34 Heat Stress monitors (WBGT)
 - Six different head protection models
 - 4 helmets
 - 2 hard hats
 - Sponge saturated with 50 mL of water to simulate perspiration and water loss was measured at the end of each testing cycle.
 - Internal and external temp. measured over 3 day period

Head Protection Temperature Study

Georgia Tech Enterprise Innovation Institute: Safety, Health and Environmental Services Group

Results

Average	Average	Average	Average	Average	Average
Ambient	External	Globe –	Dry - Under	WBGTo -	Grams
WBGTo -	Surface of	Under	HH/Helmets	Under	Water
Control	HH/Helmets	HH/Helmets		HH/Helmets	Loss
86.3 °F –	89.9 °F –	89.2 °F –	87.6 °F –	79.8 °F –	20.8 g -
87 °F	94.7 °F	93.4 °F	89.4 °F	81.6 °F	32.8 g

					ł
	Average external Surface	AverageGlobe internal	Average Dry Internal	Average WBGTo Internal	
А	94.7	91.3	87.6	79.8	
В	91.4	90.7	88.7	79.9	
с	92.7	89.2	88.3	79.9	
D D	92.9	91.9	89.4	80.8	
E	92.7	90.9	88.3	80.0	
F	89.8	93.4	88.0	81.6	

